Abstract

Porous materials possess high internal surface areas and void fractions that make them valuable in several applications, including gas storage, heterogeneous catalysis, and water purification. Despite the plentiful effort allocated to porous materials research annually, few methods exist to directly monitor and characterize chemical events occurring within a pore's confines. The crystalline nature of zeolites, covalent organic frameworks (COFs), and metal-organic frameworks (MOFs) permit structural characterization by X-ray diffraction; yet, quantifying the thermodynamics of chemical processes and transformations remains tedious and error ridden. Herein, we employ isothermal titration calorimetry (ITC) to determine the full thermodynamic profile of oxyanion adsorption in a zirconium-based MOF, NU-1000. To further validate this method, which we recently introduced to the field, we replicated ITC experiments as bulk adsorption measurements to demonstrate the correlation between the extracted stoichiometric parameter from ITC thermograms and the MOF uptake capacity. Moreover, based on the calculated association constants, we accurately predicted which analytes might be able to displace others. For example, dihydrogen phosphate can displace selenate and sulfate because of its higher association constant (ΔGphosphate = -5.41 kcal/mol; ΔGselenate = -4.98 kcal/mol; ΔGsulfate = -4.77 kcal/mol). We monitored the exchange processes by titrating oxyanion-functionalized MOF samples with a more strongly binding analyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.