Abstract

Abstract This article reports the thermodynamic efficiency analysis of the strontium oxide – strontium sulfate (SrO-SrS) water splitting cycle by applying the principles of the second law of thermodynamics and by utilizing the commercially available HSC Chemistry software. Initially, the thermodynamic equilibrium compositions allied with a) the thermal reduction of SrSO4, b) H2 production via water splitting reaction (through SrO re-oxidation) are recognized. Moreover, the temperatures desirable for performing the thermal reduction and the water splitting steps are determined. The consequence of the molar flow rate of Ar on the thermal reduction of SrSO4 is also examined in detail. The effect of the thermal reduction and water splitting temperatures on the total solar energy input mandatory to run the cycle, re-radiation shortfalls from the cycle, heat energy emitted by the coolers and the water splitting reactor, and the cycle and the solar-to-fuel energy conversion efficiency (with heat recuperation) is scrutinized in detail. The attained outcomes specify that the cycle and the solar-to-fuel energy conversion efficiency up to 18.9 and 22.8% can be accomplished if the thermal reduction and the water splitting steps are conducted at 2380 and 1400 K (with 30% heat recuperation).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.