Abstract
The increasing demand for transportation fuels, coupled with the depletion of petroleum resources and growing environmental concerns necessitates the development of efficient conversion technologies for the production of biofuels. Thermochemical approaches hold great promise for converting biomass into liquid fuels in one step using heat and catalysis. Several thermochemical processes are employed in the production of liquid biofuels depending on the target product properties: 1) direct thermal conversion; 2) catalytic cracking; 3) hydrodeoxygenation of plant oils and animal fats. Since enormous quantities of liquid fuels are consumed by transport vehicles, converting biomass into drop-in liquid fuels may reduce the dependence of the fuel market on petroleum-based fuel products. In this review, we summarize recent progress in technologies for large-scale direct thermochemical production of drop-in biofuels. We focus on the technical aspects critical to commercialization of the technologies for production of drop-in fuels from triglycerides, including cracking catalysts, catalytic cracking mechanisms, catalytic reactors, and biofuel properties. We also discuss future prospects for direct thermochemical conversion in biorefineries for the production of high grade biofuels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.