Abstract

Highly reactive thermosets are currently expanding the processability of high-performance structures for transportation industry. The short polymerization time makes it a suitable process to replace metallic structures with polymer matrix-based composite materials. The resin characterization is a fundamental step to obtain the properties and the associated constitutive models, which are required to design and optimize the manufacturing process parameters of composite materials. However, the short time on polymerization requires to use the characterization equipment at their performance capability limits. This work presents a comprehensive methodology to characterize the thermo-chemical properties of highly reactive resin systems, which are relevant for resin impregnation into the preform for liquid injection processes. Four different commercial resin systems are analyzed in this study. Experimental methodologies are analyzed and adapted for best data acquisition at high temperature isothermals. Based on the experimental data, Cure kinetics and viscosity equation-based models are used to describe the behaviour of these complex resin systems. Processing maps are developed based on the cure kinetics and viscosity models to predict the processability time for specific process conditions than can be used on liquid injection moulding processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call