Abstract

UiO-66 has broad application prospects in thermochemical adsorption heat storage owing to its great adsorption performance and stability. To further improve its performance, UiO-66 can be functionalized. Nevertheless, the adsorption and diffusion mechanism of UiO-66 and its functionalized structures is still unclear. Therefore, in this paper, it investigated the adsorption and diffusion performance of the UiO-66 series by molecular simulation. The effects of different functional groups were analysed, and the underlying mechanism was revealed. The results showed that adding –OH, –NH2, and –NH3+Cl- groups improved the adsorption capacity of UiO-66 at low pressure by 2.16, 3.22 and 4.25 times respectively, whereas adding –NO2 and −(OMe)2 groups reduced it by 46.05% and 86.84%. The adsorbent-water interaction was the strongest for UiO-66-NH3+Cl-, while UiO-66-(OMe)2 exhibited the weakest interaction. For the UiO-66 series, water molecules were preferentially adsorbed near the zirconium clusters, –OH, –NH2, and –NH3+Cl- groups. Then, they gradually filled around the organic ligands, and a very small amount gathered around the –NO2 and −(OMe)2 groups. Owing to the limitation of the pore volume, the water diffusion coefficient of all the structures initially increased and then decreased with the increase of water loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.