Abstract

The catalytic performances of the catalysts and decomposition mechanisms of dimethyl methylphosphonate (DMMP), a commonly used nerve agent simulant, are well understood based on previous studies. However, the effects of the morphology of the catalyst on DMMP decomposition performance and mechanisms remain unexplored. Thus, in this work, experimental studies were conducted on the thermocatalytic decomposition of DMMP on CeO2 nanomaterials with different morphologies, e.g., irregular nanoparticles, nanorods, and nanocubes. From the performance evaluation, CeO2 nanorods exhibited higher DMMP thermocatalytic decomposition performance as compared to irregular nanoparticles and nanocubes. The primary reaction pathways were the same on all three morphologies of materials, according to in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study, whereas side reaction paths showed variable behaviors. According to the catalytic reaction mechanism study, the surface lattice oxygen played a vital role in the thermocatalytic decomposition of DMMP and the accumulation of phosphates, carbonates, and formates were the main factors for deactivation of the catalyst. The behavior of CeO2 catalyst with different morphologies in the thermocatalytic decomposition of DMMP was revealed in this work, and this will be useful for the future design of high-performing catalysts for the efficient degradation of chemical toxicant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.