Abstract
The lack of significant buoyancy effects in zero gravity conditions poses an issue with fluid transfer in a stagnant liquid. In this paper bubble movement in a stagnant liquid is analysed and presented numerically using a computational fluid dynamics (CFD) approach. The governing continuum conservation equations for two phase flow are solved using the commercial software package Ansys-Fluent v.13 and the Volume of Fluid (VOF) method is used to track the liquid/gas interface in 2D and 3D domains. The simulation results are in reasonable agreement with the earlier experimental observations, the VOF algorithm is found to be a valuable tool for studying the phenomena of gas–liquid interaction. The flow is driven via Marangoni influence induced by the temperature difference which in turn drives the bubble from the cold to the hot region. A range of thermal Reynolds (ReT) and Marangoni numbers (MaT) are selected for the numerical simulations, specifically ReT=13–658 and MaT=214–10,721 respectively. The results indicate that the inherent velocity of bubbles decreases with an increase of the Marangoni number, a result that is line with the results of previous space experiments (Kang et al., 2008) [1]. An expression for predicting the scaled velocity of bubble has been derived based on the data obtained in the present numerical study. Some three-dimensional simulations are also performed to compare and examine the results with two-dimensional simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.