Abstract

The two-dimensional flow of a thin nanoliquid film over an unsteady stretching sheet is studied under the assumption of planar film thickness when the sheet is heated/cooled along the stretching direction. The governing equations of momentum, energy are solved numerically by using finite difference method. The rate of film thinning decreases with the increase in the nanoparticle volume fraction. On the other hand, thermocapillary parameter influences the film thinning. A boundary within the film is delineated such that the sign of Tz changes depending on the stretching distance from the origin. Further the boundary for Tz > 0 enlarges when the volume fraction of the nanoparticle increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.