Abstract

Theory suggests that thermocapillary flow about neighboring bubbles in liquids on hot walls pulls the bubbles together. A temperature gradient perpendicular to the wall establishes a surface tension gradient at the bubble–liquid interface, which in turn sustains a shear stress gradient that pumps adjacent fluid away from the wall. Neighboring bubbles are mutually entrained in this flow and also respond thermophoretically to lateral temperature gradients in the temperature near field. The theory predicts that the aggregation velocity scales with the temperature gradient, the radius of the bubbles, the derivative of the surface tension with respect to temperature, and the reciprocal of the liquid's viscosity. Bubble aggregation experiments under controlled conditions were performed to test the theory. Scaling the experimental bubble trajectories according to the theory substantially collapses all of the data onto a master curve when the interbubble separation is greater than 3 radii, which suggests that the theory is correct. Calculated velocities agree with the experimental results when hindrance of bubble motion due to the wall is included. Values for the parameter that describes the hindrance effect are obtained from fitting the data to the theory, from independent measurements, and from direct hydrodynamic calculation. The results of the three determinations agree within 15% of the possible range of the value of the parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.