Abstract

Numerical experiments with two‐ and three‐dimensional nonhydrostatic models in a rotating frame have been executed to investigate thermobaric deep convection, subsequent baroclinic instability, and their roles in vertical heat transport, using hydrographic data around Maud Rise in the Weddell Sea, Antarctica. Overturning of the water column due to thermobaric convection is apt to occur on the southern and northern flanks of the rise, and induces upward heat transport. The depth of overturning is two times larger on the northern flank (∼1.5 km) than on the southern flank (∼0.7 km). To the contrary, no overturning occurs over the top of the rise in 90 days. Baroclinic instability develops at a density front formed between the overturned and unoverturned regions since a density contrast at the front is enhanced by thermobaricity. Heat transport due to baroclinic instability is similarly upward, and at peak becomes comparable to that due to the overturning. Applicability of the results to the cooling events previously reported is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.