Abstract

Microwave-induced thermoacoustic tomography (TAT) has potential for detecting germinal matrix hemorrhage (GMH). However, it has not been demonstrated in vivo. To demonstrate the feasibility of TAT for in vivo detecting GMH by using neonatal mouse. A cylindrical-scanning TAT system was developed with optimized microwave irradiation and ultrasound detection for neonatal mouse imaging. Neonatal mice were used to develop GMH model by injection of autologous blood into the periventricular region. After TAT experiments, the animals were sacrificed, frozen and excised to validate the TAT findings. The detailed comparative analyses of the TAT images and corresponding photographs of the excised brain tissues were conducted. Satisfactory matches are identified between the TAT images and corresponding histological sections, in terms of the shape and size of the brain tissues. Some organs and tissues were also identified. Particularly, comparing to the corresponding histological sections, using TAT enables to more accurately detect the hematoma region at different depths in the neonatal mouse brain. This study demonstrates for the first time that TAT can detect GMH in neonatal mouse cerebrum in vivo. This represents the first important step towards the in vivo diagnosis and grading of hemorrhage in the infant human brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.