Abstract

Thermoacoustic is the science that studies the conversion of the heat into acoustical sound and vice versa. The conversion of heat to acoustic power is done through Thermoacoustic engine (TAE). This generated acoustic power can be converted to another and useful form such as mechanical or electrical energy. On the other hand, Thermoacoustic refrigerator (TAR) or heat pump is a device that uses acoustic sound to pump heat from a lower temperature reservoir. The most distinct feature of thermoacoustic systems is that they do not have moving parts, which makes them reliable. Thermoacoustic engine can recycle any source of waste heat and use sustainable heat like concentrated solar. Also, in contrast to conventional refrigeration methods, thermoacoustic refrigerator spares the usage of environmentally harmful gases that is daunting the centralized cooling industry. There is no doubt the thermoacoustic technology has been considered in various applications with some unspoken advancement. In this manuscript we intend to review the fundamentals of thermoacoustics and highlight their recent developments. Additionally, analytical simulation of thermoacoustic refrigerator will be discussed and validated against experimental published work. The goal is to reveal the effect of different parameters on the performance in an attempt to establish design guidelines for an improved technology metrics. The future prospects of thermoacoustic refrigeration are also presented at the end of this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call