Abstract

The generation of airborne ultrasound is presented using the thermoacoustic principle applied to carbon materials at the micro- and nanoscale. Such materials are shown to be capable of emitting ultrasound when being fed by an alternating current. We tested the acoustic performance of carbon fibers, bucky papers and electrospun polyacrylonitrile-derived carbon nanofibers and determined the sound pressure for frequencies up to 350 kHz. A comparison between the experimental results and the theoretical prediction showed remarkable agreement for frequencies up to 150 kHz. Beyond 150 kHz, we found slight deviations from the expected sound pressure dependence on the square root of the frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call