Abstract

Thermo-reversible gel of myofibrillar protein (MP) can be made by tactics of elaborate deamidation using protein-glutaminase (PG), and this work aimed to disclose the link between thermally reversible gelation of MP and the coiled-coil (CC). Enzymatic deamidation fragmented myofibril filaments and triggered structural reassembly to create small-sized aggregates. The coiling and dissociation of CC structure in the myosin tails is the fundamental structural basis of the PG deamidated MP (DMP) in the dynamic evolution of reversible gelation. After specific inhibition of CC assembly by trifluoroethanol (TFE), the thermo-reversible gel ability of DMP was impaired, which confirmed that the dynamic assembly of CC with temperature response played a key role in the thermo-reversible gelation of DMP. The findings may broaden the molecular basis of natural CC reversible gelation and foster advances for the development of new muscle protein products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.