Abstract

In this study, we present a novel thermo-responsive polymer platform that is based on the alanine methyl ester-containing homopolymer (PNAAMe) and the copolymer with glycine methyl ester-based vinyl monomer (P(NAAMe-co-NAGMe)) brushes prepared via surface-initiated atom transfer radical polymerization. Water contact angles for these brushes measured at different temperatures reveal that the polymer brushes collapse and dehydrate around 13°C and 25°C (TTs), respectively, upon elevating the temperature. At 37°C, seeded fibroblasts (NIH/3T3) adhere to and spread well onto these brush surfaces although the copolymer brush of P(NAAMe-co-NAGMe) depresses the number of adherent cells less than half of that for the homopolymer of PNAAMe after 24h of cell culture due to increment in hydrophilicity. To prepare the cell-sheet, the cells are seeded on both polymer brushes and cultured at 37°C in the presence of serum. After 4days, the cells proliferated confluently on these brush surfaces. Lowering the temperature to 4°C and 20°C below TT of each brush led to the cell-sheet detachment as a monolayer form from the polymer brushes accompanying with the switching of surface affinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.