Abstract

Gentle harvesting of corneal endothelial cell sheets grown in culture is of interest for the development of cornea replacement strategies. Thin films of a fast responding copolymer of N-isopropylacrylamide (NiPAAm) and diethyleneglycol methacrylate (DEGMA) with a phase transition temperature of 32 degrees C were prepared and evaluated for that purpose. The polymer layers were immobilized onto fluorocarbon substrates using low pressure argon plasma treatment. Cell culture and detachment experiments were performed with L929 mouse fibroblasts and human corneal endothelial cells (HCEC) at standard conditions. The hydrogel-coated supports were found to permit adhesion, spreading, and proliferation of both cell types. Harvesting of cell sheets was achieved upon lowering the temperature to about 30 degrees C. The formation of a closed monolayer as a crucial prerequisite for maintaining ionic pump function in HCEC was proven by ZO-1 immunostainung. Labeling of fibronectin indicated that the vast majority of the extracellular matrix is detached from the hydrogel coatings together with the cell layer. Inspired by this result, the reuse of the hydrogel-coated culture carriers was investigated confirming the suitability of the substrates for repeated cell harvesting. Altogether, the introduced thermoresponsive coating was found advantageous for the efficient generation of HCEC sheets and will be further utilized in transplantation strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.