Abstract

Thermo-oxidative degradation of mollusk shells to CaO through intermediate phase of CaCO3 has been investigated using various analytical techniques. Powders of shells species (Dosinia exoleta and Ostrea edulis), with particle size fractions of 0.045 – 0.125 mm, 0.125–0.2 mm, and 0.2–1 mm, were subjected to degradation at the various heating rates (5, 10, 15 and 20 °C min−1). Degradation pathway of this carbonate-rich waste material has not yet been analyzed in detail at particulate level. Understanding transformation process in air should lead to control over yield and morphology of final product. Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) techniques were used to benchmark transformation steps at different heating rates and final decarbonation temperatures, while scanning electron microscope (SEM) was used to analyze the effect of temperature on evolution of morphological changes for particles of different fractions. It was found that sintering in the presence of carbon dioxide (CO2) could be triggered by agglomeration of CaO crystals, enhanced by CO2 adsorption that increases surface energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.