Abstract
The thermo-optical properties of gold nanoparticles (NPs) embedded in an ice matrix were investigated using photoluminescence and Raman spectroscopy. An intense laser beam alone will not melt ice, but the addition of embedded Au NPs allows for melting with resonant laser light of relatively weak intensity. This is due to the strong absorption of Au NPs in the plasmon resonance regimen. We can determine the threshold melting power, P melting(T), where T is the background temperature by recording time-resolved Raman scattering signals of the system. A resultant loss of ice signal indicates melting and an absence of conversion to water implicates an irreversible loss of water molecules to the gas phase due to the location of the Au NP agglomerate at or near the ice/vapor surface. For fully embedded NP agglomerates, the ice/water phase transition can be monitored through Raman spectroscopy and the number of NPs in an agglomerate and their interactions can have a greater effect on localized heat generation. The local temperature inside and around the NP agglomerate depends strongly on its geometry and leads to a large scatter in the measured P melting as a function of the reduced temperature for different agglomerates. Immobilized Au NP agglomerates can also be characterized using single-particle spectroscopy, and results show that the plasmon emission of Au NPs scales with the number of NPs in an agglomerate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.