Abstract
A thermo-, mechano-, and vapochromic bimetallic cuprous-emissive complex has been reported, and the origin and application of its tri-stimuli-responsive luminescence have been explored. As revealed by single-crystal structure analysis, thermo- and vapochromic luminescence adjusted by heating at 60 °C and CH3CN vapor fuming, accompanied by a crystalline-to-crystalline transition, is due to the breaking and rebuilding of the CH3CN-Cu bond, as supported by 1H nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetry (TG), and time-dependent density functional theory (TD-DFT) analyses of the CH3CN-coordinated species [Cu2(μ-dppa)2(μ-η1(N)η2(N,N)-fptz)(CH3CN)](ClO4)·H2O (1) and its CH3CN-removed derivative [Cu2(μ-dppa)2(μ-η1(N)η2(N,N)-fptz)](ClO4)·H2O (2). Luminescence mechanochromism, mixed with a crystalline-to-amorphous transition where the initial crystalline is different for 1 and 2, is mainly assigned as the destruction of the CH3CN-Cu bonding and/or the O···HNdppa and OH···Ntriazolyl hydrogen bonds. It is also suggested that a rational use of switchable coordination such as weak metal-solvent bonding is a feasible approach to develop multi-stimuli-responsive luminescent materials and devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.