Abstract

AbstractRefractory materials are subjected to both quasi‐static and dynamic thermal loading (thermal shock) causing damage up to mechanical failure. Typical refractories are magnesia carbon bricks consisting of periclase (MgO) and carbon inclusions. Recently, a significant improvement of the thermo‐mechanical behaviour could be achieved by cellular hybrid composites made of periclase‐filled carbon foams. The present contribution focuses on MgO‐filled carbon foams and the investigation and optimisation of the structure‐property relationship with respect to a reduction of thermally induced stresses and damage. It is a transient as well as static, fully coupled thermo‐mechanical problem. According to the fact that, in general, refractories are brittle materials a linear elastic model, with a damage criterion was used. To optimise the structural morphology of the cellular refractories, the effect of micro structural changes has been determined. For the investigation of the thermal shock! behaviour, the results correlate very well with the experimentally motivated Hasselman relation. There is a significant size effect depending on the pore size. (© 2014 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.