Abstract

Compared with amorphous shape memory polymers (SMPs), semicrystalline SMPs have more diverse shape memory effects (SMEs) which promotes their application in smart structures. To reveal the driving mechanism of the triple SMEs of semicrystalline SMPs, our study focuses on developing the constitutive model under the condition of finite deformation. In the paper, a thermo-mechanical constitutive model under consideration of the second law of thermodynamics is developed based on the theory of thermodynamics with internal state variables. The model can be used to describe the nonequilibrium response of the amorphous and semicrystalline components in the vicinity of the glass transition, melting, and crystallization. To verify the validity of model, numerical simulation is carried out for a thermo-mechanical shape memory cycle which can be divided into a two-step programing process and a two-step recovery process. The comparison between the model results and the test data shows good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call