Abstract

In vacuum technology, metal gasket seals are extensively employed to achieve a UHV with reduced contamination considering the pressure and temperature variations as it performs a static seal between two stationary members of a mechanical assembly. The optimum sealing is attained over the balancing of the forces effective, which are function of temperature, governs the surface deformation for the metal gasket seal follows into degradation in the leak tightness at elevated temperatures. The prime component exerting the most deformation force over metal gasket seals, gasket seating force is a constant value generated by the bolting of the stationary members of a mechanical assembly. The paper address to metal gasket seals, copper and aluminum, behavior under thermo-mechanical load is analyzed (simulation), with ANSYS platform, workbench. The major concern is to investigate the typical deformation behavior as a function of thermal variation, baking/ cooling. For copper and Aluminum gasket seals, 16mm to 250mm internal diameter, exposed to pre-established gasket seating force under wide temperatures range. The deformation, average and the deformation range, observed to move in a very specific manner and runs to a wide range for a given material and size. The data reported here deserves to be substantial enough to establish the prediction of thermal behavior of metal gasket seals for standardization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.