Abstract

A thermo-mechanical progressive analysis model is proposed for predicting fatigue-driven delamination in composite laminated plates. The delamination is simulated based on extended layerwise method (XLWM). The traction-separation law is employed to the heat flux transfer and mechanical load transfer across the delamination front. A thermo-mechanical cohesive zone model (TM-CZM) is developed by Peerlings damage law to simulate the fatigue characteristic of delamination front. In the numerical examples, the effects of mesh lengths, acceleration multipliers, interface strengths, and cyclic temperature load magnitudes on the delamination expansion process are investigated, and the temperature-life curves of composite laminates are determined as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call