Abstract

The mechanical properties of quasi-brittle materials, which are widely used in engineering applications, are often affected by the thermal condition of their service environment. Moreover, the materials appear brittle when subjected to tensile loading and show plastic characteristics under high pressure. These two phenomena manifest under different circumstances as completely different mechanical behaviors in the material. To accurately describe the mechanical response, the material behavior, and the failure mechanism of quasi-brittle materials with the thermo-mechanical coupling effect, the influence of the thermal condition is considered in calculating bond forces in the stretching and compression stages, based on a new bond-based Peridynamic (BB-PD) model. In this study, a novel bond-based Peridynamic, fully coupled, thermo-mechanical model is proposed for quasi-brittle materials, with a heat conduction component to account for the effect of the thermo-mechanical coupling. Numerical simulations are carried out to demonstrate the validity and capability of the proposed model. The results reveal that agreement could be found between our model and the experimental data, which show good reliability and promise in the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.