Abstract
In order to quickly and accurately grasp the law of freeze-thaw reaction of permafrost slopes, based on the hydro-thermal-mechanical coupling theory, relying on MATLto compile a finite element program that can reflect the multi-field coupling mechanism of the soil. This test is in good agreement with the classic test, which verifies the reliability of the program. Based on this, the paper developed a set of water-thermal-mechanical coupling analysis software for permafrost slopes that can run independently and is easy to operate. The software?s functions and development process are introduced. The response characteristics of frozen soil slopes under freezing and thawing are analyzed in combination with the example papers. The results show that the slope temperature, moisture, stress and displacement are obviously different at different times. The maximum shear stress band appears at the freezing-thawing interface of the slope. The horizontal displacement of the slope is basically the same along the slope when the freezing is completed. At the end of the thawing period, the upper part and the lower part are large. The horizontal displacement and unfrozen water content of the slope during the thawing period are larger than those during the freezing period, but the maximum shear stress is small and the stability of permafrost in the warm season is poor. It has important application value for freeze-thaw calculation of frozen soil slope engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.