Abstract

Thermo-mechanical analysis of a tapered cylindrical RF interaction cavity of a TE6,2, 95 GHz, 100 kW gyrotron has been carried out to study the effect of ohmic loss generated due to radiated microwave energy. For stable device operation, with the help of design relationships, describing the approach, an optimum thermal system design has been presented and performances got analyzed using a commercial simulation code “COMSOL Multiphysics”. For various cavity thicknesses, and convective heat transfer coefficient values under without fins and with radial fins conditions system performance have been investigated. Taking water as coolant at ~293 K, hydraulic diameter and flow rate range has been determined for the optimum convective heat transfer coefficient values. An optimized simple cooling system thus designed keeps the maximum RF cavity radius deformation (increase) ~ 3.2 μm maintaining the average cavity outer surface temperature of 308 K. Further, using nonlinear time-dependent multimode analysis, a decrease of 48 MHz in resonance and a decrement of 20 in diffractive quality factor of the interaction cavity along with reduction of 2 kW of the device output power have been observed in the case for the deformed cavity from those of the initial cavity gyrotron device, which are found within the tolerance limit of such devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.