Abstract

Production of electricity through solar systems is a viable alternative, especially for deserted regions where access to electricity is difficult. Solar chimney power plant (SCPP) is one of the promising concepts in renewable energy technology that needs performance enhancement. The objective of this research is to investigate a novel concept, which consists of a horizontal solar chimney power plant with an adapted collector entrance, named sloped collector entrance SCPP (SCESCPP). The effect of the collector entrance shape (slope, sloping distance) is investigated. For each sloping distance, eleven values for the slope are examined. Thus, a numerical investigation is carried out using a 2D axisymmetric chimney model. The model was first validated using experimental results. The influence on air thermo-hydrodynamic behavior of this system is comprehensively studied to enhance the understanding and deepen the analysis in order to improve the performance of the SCPP. The results indicate that the new collector entrance design influences the system performance in a significant manner. It is shown that the best performing configuration (sloping distance of 0.8 and slope of 9.1°) produces an available power reaching 16.36% more than that for zero slope collector roof at same conditions. Moreover, it is found that the optimal slope depends on sloping distance and remains almost the same for different Rayleigh numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.