Abstract
The FEBEX test was a large-scale demonstration project for the deep geological disposal concept of nuclear waste involving bentonite seals that lasted 18 years. One of the objectives of the test was to evaluate the capabilities of numerical methods to provide reliable predictions of the physical processes in a geological repository. Although previous studies have demonstrated the performance of current models of water, vapour and heat flow to capture the evolution of temperature and relative humidity, some uncertainties remain in the capabilities of constitutive models to predict and interpret the stress–strain behaviour of the bentonite. In this paper a recently developed thermo-hydro-mechanical (THM) elastoplastic constitutive model is used to analyse the bentonite barrier of the FEBEX test by means of the Finite Element method. The model features a two-way hydro-mechanical coupling and includes thermo-plasticity. The associated water retention formulation distinguishes the behaviour of adsorbed water and free water. The predictive capabilities of the model are tested by calibrating the material parameters on the sole basis of laboratory tests. Good predictions of total stress, dry density and water content are obtained and the analysis of the computed THM stress paths provides new insights on the causes of the final heterogeneous state of the bentonite barrier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.