Abstract
An analytical study is presented on the thermo-hydraulic stability of a boiling natural circulation loop with a chimney at low pressure start-up. The effect of flashing induced by the pressure drop in the channel and the chimney due to gravity head on the instability is considered. A method to analyze linear stability is developed, in which a drift-flux model is used. The analytical result of a stability map agrees very well with the experimental one obtained in a previous report. Instability does not occur when the heater power is too low to generate voids in the chimney and only natural circulation of single phase can be induced. Instability tends to occur when boiling occurs only near the chimney exit due to flashing. This instability phenomenon has some similarities with density wave oscillation, such as the phase difference of temperature between the boiling region and non-boiling region, and the oscillation period which is near to the time required for fluid to pass through the chimney. However, there are also some differences from density wave oscillation, such as the boiling region is very short, and pressure fluctuation can affect void fraction fluctuation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.