Abstract

Selective laser melting (SLM) utilizes a laser source to melt and fuse metallic particles to form dense solid parts. Since molten metals have surface tension gradients, the thermo-capillary effect becomes a driving force of melt flow, which will subsequently determine the molten/solidified track as well as the build surface morphology. In this study, a 3D volume of fluid model has been developed to simulate heat transfer and fluid dynamic during single-track laser scanning. A sequential powder addition algorithm is applied to obtain random powder distribution over a thick substrate. Temperature-dependent thermo-physical properties of Ti-6Al-4V are used to define the material, and a volumetric heat source is included as an approximation to laser irradiation. As a result of continuous melting and solidifying, the thermal behavior, the molten metal flow and the free surface formation can be numerically analyzed. In addition, a two-layer simulation has been carried out to study the interlayer bonding. Simulations results are compared with SLM experiments using the single-track morphology acquired by white-light interferometry. The melt pool widths obtained from simulations are in good agreement with the measured single-track widths. On the other hand, it is observed that single tracks formed in SLM have an elevated bead height, which is not realized numerically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call