Abstract

PurposeThis paper aims to understand the magnetohydrodynamics (MHD) mechanism in the molten pool under different modes of magnetic field. The comparison focuses on the Lorenz force excitation and its effect on the melt flow and solidification parameters, intending to obtain practical references for the design of magnetic field-assisted laser directed energy deposition (L-DED) equipment.Design/methodology/approachA three-dimensional transient multi-physical model, coupled with MHD and thermodynamic, was established. The dimension and microstructure of the molten pool under a 0T magnetic field was used as a benchmark for accuracy verification. The interaction between the melt flow and the Lorenz force is compared under a static magnetic field in the X-, Y- and Z-directions, and also an oscillating and alternating magnetic field.FindingsThe numerical results indicate that the chaotic fluctuation of melt flow trends to stable under the magnetostatic field, while a periodically oscillating melt flow could be obtained by applying a nonstatic magnetic field. The Y and Z directional applied magnetostatic field shows the effective damping effect, while the two nonstatic magnetic fields discussed in this paper have almost the same effect on melt flow. Since the heat transfer inside the molten pool is dominated by convection, the application of a magnetic field has a limited effect on the temperature gradient and solidification rate at the solidification interface due to the convection mode of melt flow is still Marangoni convection.Originality/valueThis work provided a deeper understanding of the interaction mechanism between the magnetic field and melt flow inside the molten pool, and provided practical references for magnetic field-assisted L-DED equipment design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call