Abstract

In a previous study, we showed the anisotropy of plastic strain due to the pearlitic transformation and proposed a hydrostatic pressure-dependent constitutive equation to describe this phenomenon. In the present study, we assess the validity of this model using a bending-tensile loading system to experimentally and numerically analyze and characterize the pearlitic transformation plasticity. First, the maximum bending deflections due to the austenite-pearlite transformation were measured under different loadings and then transformation-plasticity coefficients were determined. Furthermore, as was done for bending-tensile loading tests, the pearlitic transformation plasticity was simulated using Abaqus Standard under the same austenitization and loading conditions as in experiments, and the calculated results for pearlitic-transformation plastic deformation are compared with the experimental results. The results show that the transformation plastic deflection due to the pearlitic transformation decreases with increasing applied tensile stress. In addition, this behavior can be described by a hydrostatic pressure-dependent model in large-deformation theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.