Abstract

Designing components for thermo-mechanical loads is a challenging process. While mechanical loads like forces or pressure demand a stiff and thick-walled design, thermal loads create temperature gradients, resulting in thermo-mechanical stress from the structure's temperature proportional and, therefore, uneven expansion. In contrast to a pure mechanical load case, an initial design before optimization can already include stress levels beyond the limit of the material. Therefore, common optimization approaches for a preliminary design use exemplary systems with low-temperature gradients, so thermal stresses do not exceed the limit. From there, energy density is used to calculate the topology optimizations sensitivity and therefore decide which elements to remove and which to keep. This paper describes a novel approach for reducing thermo-mechanical stress by following the stress corresponding temperature gradients from the heat source to the sink to calculate a new sensitivity that helps to grow cooling channels. The optimization is exemplarily shown on a piston for internal combustion engines. While handling delta temperatures of 600K, results show a reduction in thermo-mechanical stress while reducing the component's mass. Because the approach reduces critical stress in a component, it allows the initial design (before the topology optimization) to have stress levels way above yield strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call