Abstract

The thermodynamic and economic suitability of four geothermal power systems is analyzed. When the heat source temperature ranges from 100-150?C, the performance indicators of power capacity per unit geo-fluid, exergy efficiency, payback period, net present value and internal rate of return for four types of the power system are calculated. The results show that when the heat source temperature increases from 100-150?C, the power capacity per unit geo-fluid for single flash, organic rankine cycle (ORC), double flash, and flash-ORC system increases from 2.26-7.72 kWh/t, 2.05-8.37 kWh/t, 2.96-9.96 kWh/t, and 2.76-9.82 kWh/t, respectively, and the performance indicators of two-stage energy conversion systems are better than single systems. R245fa is selected as the working fluid based on anti-scaling and better performance. When the heat source temperature is 130?C, the payback period, net present value and internal rate of return of flash-binary power system are six years, 2508000 US$ and 16.09%, respectively. The research shows that, unlike the single objective optimization of the two power systems, the multi-objective feasibility analysis is a technical integration innovation of the existing research. The research can provide technical support for power construction and realize the sustainable development of clean energy in China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.