Abstract

Large scale power production benefits from the high efficiency of gas-steam combined cycles. In the lower power range, fuel cells are a good candidate to combine with gas turbines. Such systems can achieve efficiencies exceeding 60%. High-temperature solid oxide fuel cells (SOFC) offer good opportunities for this coupling. In this paper, a systematic method to select a design according to user specifications is presented. The most attractive configurations of this technology coupling are identified using a thermo-economic multi-objective optimization approach. The SOFC model includes detailed computation of losses of the electrodes and thermal management. The system is integrated using pinch based methods. A thermo-economic approach is then used to compute the integrated system performances, size, and cost. This allows to perform the optimization of the system with regard to two objectives: minimize the specific cost and maximize the efficiency. Optimization results prove the existence of designs with costs from 2400$∕kW for a 44% efficiency to 6700$∕kW for a 70% efficiency. Several design options are analyzed regarding, among others, fuel processing, pressure ratio, or turbine inlet temperature. The model of a pressurized SOFC–μGT hybrid cycle combines a state-of-the-art planar SOFC with a high-speed micro-gas turbine sustained by air bearings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call