Abstract
This paper presents a thermo-economic analysis of an integrated biogas-fueled solid oxide fuel cell (SOFC) system for electric power generation. Basic plant layout consists of a gasification plant (GP), an SOFC and a retrofitted steam-injected gas turbine (STIG). Different system configurations and simulations are presented and investigated. A parallel analysis for simpler power plants, combining GP, SOFC, and hybrid gas turbine (GT) is carried out to obtain a reference point for thermodynamic results. Thermodynamic analysis shows energetic and exergetic efficiencies for optimized plant above 53% and 43% respectively which are significantly greater than conventional 10 MWe plants fed by biomass. Thermo-economic analysis provides an average cost of electricity for best performing layouts close to 6.4 and 9.4 c€/kWe which is competitive within the market. A sensitivity analysis of the influence of SOFC stack cost on the generation cost is also presented. In order to discuss the investment cost, an economic analysis has been carried out and main parameters such as Net Present Value (NPV), internal rate of return (IRR) and Time of Return of Investment (TIR) are calculated and discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.