Abstract

Detonation nanodiamonds (DNDs) are emerging as bioimaging platforms due to their biocompability, small primary particle size, reactive surface, and stable fluorescence after modification. In this paper, a heteroatom engineering method is provided to fabricate the fluorescent DNDs through pyrolysis of dibenzyl disulfide. The quantum yield of these sulfur (S)-functionalized DNDs (SDNDs) increases with sulfur percentage. The solubility and stability of SDNDs in aqueous solution are also significantly increased due to the formation of hydrophilic sulfur groups on DND. Furthermore, these SDNDs are used to conjugate the stimuli-responsive poly(N-isopropylacrylamide) (PNIPAM) through the ‘graft from’ method. The conjugation demonstrated both pH- and thermo-responsive fluorescence behaviors, which shows promise to be used in ratiometric fluorescence sensing for the detection of intracellular pH and temperature values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.