Abstract

TiC/FeNiCr cermet with TiC particles as hard phases and FeNiCr alloy as binder phase was in situ synthesized by thermite reactions under high gravity. A double-layer structure was obtained, including an upper layer enriched with TiC particles and an under layer with few TiC particles. Between the two layers, no interfacial line, pores, or defaults existed. A large amount of needle-like Cr7C3 phases were homogeneously dispersed in the FeNiCr binder phase as multiple reinforcements. A braiding structure was formed between the precipitated NiAl phases and the matrix, where the two phases kept a coherent or semi-coherent relationship. The hardness and wear resistance were evaluated, and the upper layer possessed high hardness and excellent wear resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.