Abstract

We show the existence of solutions to a system of elliptic PDEs, that was recently introduced to describe the electrothermal behavior of organic semiconductor devices. Here, two difficulties appear: (ⅰ) the elliptic term in the current-flow equation is of p(x)-Laplacian-type with discontinuous exponent p, which limits the use of standard methods, and (ⅱ) in the heat equation, we have to deal with an a priori L1 term on the right hand side describing the Joule heating in the device. We prove the existence of a weak solution under very weak assumptions on the data. Our existence proof is based on Schauder's fixed point theorem and the concept of entropy solutions for the heat equation. Here, the crucial point is the continuous dependence of the entropy solutions on the data of the problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.