Abstract
Vacuum and solid-state thermionic emission have long been proposed as a means of converting heat or solar energy directly into electrical power. However, low work function materials must be developed before a reasonably efficient power generation device can be realized. In this work, thermionic emission energy distributions were measured for four samples including a single-crystal tungsten (100) sample, a pristine CNT mat, and two potassium-intercalated CNT mats. One of the potassium-intercalated CNT mats was composed largely of randomly oriented CNTs while the other CNT sample was grown in templated anodized alumina to align the growth pattern. Thermionic emission data obtained from the tungsten sample validated the experimental apparatus and method. The pristine CNT mat exhibited an emission distribution with a work function of 4.7 eV, while the potassium-intercalated samples exhibited work functions of approximately 3.1 and 3.4 eV for the randomly oriented and the templated meshes, respectively. The differences in the measured work function values for intercalated samples may be due to emitter tip differences. Both intercalated CNT samples showed some degradation after cooling from 510°C and reheating to the same temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.