Abstract

AbstractWe present an analytical device model for a graphene field‐effect transistor (GFET) on a highly conducting substrate, playing the role of the back gate, with relatively short top gate which controls the source–drain current The equations of the GFET device model include the Poisson equation in the weak nonlocality approximation. Using this model, we find explicit analytical formulae for the spatial distributions of the electric potential along the channel and for the voltage dependences of the thermionic and tunneling currents. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.