Abstract

This paper presents a combustion optimization system for coal-fired boilers that includes a trade-off between emissions control and boiler efficiency. Designing an optimizer for this nonlinear, multiple-input multiple-output problem is challenging. This paper describes the development of an integrated combustion optimization system called ThermalNet, which is based on a deep Q-network (DQN) and a long short-term memory (LSTM) module. ThermalNet is a highly automated system consisting of an LSTM–ConvNet predictor and a DQN optimizer. The LSTM–ConvNet extracts the features of boiler behavior from the distributed control system (DCS) operational data of a supercritical thermal plant. The DQN reinforcement learning optimizer contributes to the online development of policies based on static and dynamic states. ThermalNet establishes a sequence of control actions that both reduce emissions and simultaneously enhance fuel utilization. The internal structure of the DQN optimizer demonstrates a greater representation capacity than does the shallow multilayer optimizer. The presented experiments indicate the effectiveness of the proposed optimization system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.