Abstract

This paper investigates the effect of ambient temperature on the performance characteristics of an automotive poly-rib belt operating in an under-the-hood temperature environment. A three-dimensional dynamic finite element model consisting of a driver pulley, a driven pulley, and a complete V-ribbed belt was constructed. Belt tension and rotational speed were controlled by means of loading and boundary inputs. Belt construction accounts for three different elastomeric compounds and a single layer of helical wound reinforcing cord. Rubber was considered as hyperelastic material. Cord is linear elastic. The material model was implemented in ABAQUS/Explicit for the simulation. Analysis was focused on rib flank and tip since stress concentrations in these regions are known to contribute to crack initiation and fatigue failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call