Abstract

The morphological transitions induced by external stimuli in shape-memory polymers (SMPs) can be exploited with the real-time response of far-field diffraction patterns in diffractive optical elements (DOEs). In this paper, we combine the temperature characteristics of SMPs and the display characteristics of DOEs to obtain an optical temperature sensing film where the temperature information is taken as a change of far-field diffraction images. This process was achieved by imprinting the micropatterns of the DOEs on the epoxy-based SMP film, which can be programmed to hold a temporary optical image and revert to its original image upon exposure to a specific temperature. Furthermore, the specific temperature at which the image transformation occurs can be customized by varying the chain flexibility of the SMP. Based on a range of transition points, by imprinting the desired combination of SMP-DOEs on a film, a sensor that can record and inform the temperature history is demonstrated. As for the feasible application of this technique, it can be used for the compact and reliable optical temperature indicators, which can be applied in temperature-sensitive industries such as food and pharmaceuticals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call