Abstract

Shape-memory polymers (SMPs) are smart materials that can alter their configuration in response to external stimuli. They have shown promise in a number of application areas, including soft robotics or biomedical devices. Frequently, however, the materials needed are expensive, or labor-intensive synthetic processes are involved. In this contribution, we report a versatile and cost-effective manufacturing method for SMPs based on binary elastomer-thermoplastic-blends. These were produced from ethylene-propylene-diene monomer rubber (EPDM) combined with ultra-low-density polyethylene (ULDPE), propylene-ethylene copolymer (PP-c-PE), or high-density polyethylene (HDPE) as thermoplastic components. Atomic force microscopy revealed an immiscible two-phase morphology. Results of dynamic-mechanical thermal analysis showed that all polymer blends with a high thermoplastic load had efficient thermo-responsive dual-shape-memory, also demonstrated on macroscopic specimens. Furthermore, multi-shape-memory of elastomer/thermoplastic (40/60)-blends was investigated. Especially ULDPE-containing blends exhibited particularly promising multi-shape-memory features and stepless, controllable temperature response. Mechanistically, this is based upon the synergistic interaction of the cross-linked elastomer and the thermoplastic switching phase, consisting of different crystalline segments melting over a wide range from 60 to 125 °C. The continuous shape recovery over a broad temperature range could be used to create reusable test strips, e.g., for indicating exposure temperature in transportation chains or overheating protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.