Abstract

This study deals with Cu-water nanofluid flow over porous surface cone in a thermally stratified medium. Heat transfer is examined with Cattaneo–Christov heat flux model instead of Fourier’s law along heat generation/absorption. Effects of free convection, magnetic field and suction are also reported. Transformations are utilized to attain constitutive laws of flow in form of ordinary differential equations, which are then dealt with Runge–Kutta–Fehlberg and shooting scheme. Physical impacts of parameters involved are discussed and presented graphically and through tabular values. Velocity enhances with Grashof number but not with magnetic parameter. Heat generation/absorption, thermal stratification and thermal relaxation parameter reduces temperature. The effect of heat generation/absorption and thermal relaxation parameter is to increase heat transfer. Results reveal that effects of thermal stratification parameter becomes less dominant to wall heat transfer coefficient with intensification in heat generation/absorption parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.