Abstract

Recently polymer nanocomposite has been attracting much attention as an emerging insulating material. In this paper, we measured thermally stimulated depolarization current (TSDC) in low-density polyethylene (LDPE)/MgO nanocomposite by changing measuring parameters such as the temperature increasing rate and the intensity of electric field applied. As a result, a TSDC peak that spreads over a wide temperature range from 0°C to 60°C was observed in all the samples. As the amount of MgO nano-filler increases, the TSDC peak height decreases. Furthermore, by adopting a partial heating method, the wide TSDC peak was resolved into several component peaks. Among them, the peak at around 12°C was found not to appear in the base LDPE. By analyzing its initial rising portion, the 12-°C peak was assumed to have a fairly deep energy depth of about 2 eV. These results indicate that charge carriers tend to be captured more strongly by the addition of MgO nano-fillers. If these captured charge carriers induce homocharge layers in the vicinity of the electrodes, further formation of space charge would be suppressed. This seems to explain the fact that the amount of space charge is smaller in the nanocomposite with a proper addition of MgO than in the base LDPE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.