Abstract

AbstractNew 4,4′‐dihydroxysaltrien metal complexes, (MOHSal2trien, where M = Zn and Ni) were synthesized and used for the synthesis of metal‐containing polyurethane‐ureas and copolyurethane‐ureas. MOHSal2trien underwent polymerization reaction with two diisocyanates, namely 4,4′‐diphenylmethane diisocyanate (MDI) and isophorone diisocyanate (IPDI) to yield polyurethane‐ureas. Copolyurethane‐ureas were synthesized by the reaction between MOHSal2trien, MDI, and diamines or dialcohols. The diamines or dialcohols employed were 4,4′‐methylenedianiline (MDA), hexamethylenediamine (HMA), bisphenol A (BPO), and hexamethylene glycol (HMO). The polymers were characterized by IR, NMR, elemental analysis, XRD, solubility, and viscosity. Thermal stability and flammability of polymers were studied by thermogravimetric analysis (TGA) in air and by measuring limiting oxygen index (LOI) values, respectively. It was found that the resulting metal‐containing polyurethane‐ureas and copolyurethane‐ureas exhibited good thermal stability. Among all metal‐containing polyurethane‐ureas, NiOHSal2trien‐MDI was the most thermally stable polymer with char yield of 55% at 600°C. Solubility in DMSO of zinc‐containing copolyurethane‐ureas based on dialcohols was greatly improved when compared with those of zinc‐ and nickel‐containing polyurethane‐ureas. ZnOHSal2trien‐MDI‐BPO and ZnOHSal2trien‐MDI‐HMO gave high char yield of 46% at 600°C, which is almost comparable with that of NiOHSal2trien‐MDI. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.