Abstract

Nanocrystalline and nanotwinned materials achieve exceptional strengths through small grain sizes. Due to large areas of crystal interfaces, they are highly susceptible to grain growth and creep deformation, even at ambient temperatures. Here, ultrahigh strength nanotwinned copper microstructures have been stabilized against high temperature exposure while largely retaining electrical conductivity. By incorporating less than 1vol% insoluble tungsten nanoparticles by a novel hybrid deposition method, both the ease of formation and the high temperature stability of nanotwins are dramatically enhanced up to at least 400°C. By avoiding grain coarsening, improved high temperature creep properties arise as the coherent twin boundaries are poor diffusion paths, while some size-based nanotwin strengthening is retained. Such microstructures hold promise for more robust microchip interconnects and stronger electric motor components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.