Abstract

Cellulose nanocrystals are commonly obtained by acid hydrolysis, particularly with H2SO4. However, a small amount of deposited sulfate-groups contributes to the degradation of their thermal stability. This study prepared thermally-stable and sulfate-group-free cellulose nanospheres (CNSs) from office waste paper by H2SO4 hydrolysis followed by solvolytic desulfation. The optimal desulfation conditions (i.e., 5 wt% MeOH, reaction temperature of 90 °C, a reaction time of 20 min, 0.5 mM pyridine) were preliminarily found from a one-factor-at-a-time experiment and validated by the results of a central composite design. The optimal desulfation conditions promoted environmental sustainability with less pyridine and MeOH and comparably shorter reaction time. The desulfated CNSs had a significant thermal stability enhancement from 186 to 340 °C. Comprehensive characterization of the morphology, chemical composition, and thermal behavior of the desulfated CNSs reconfirmed the complete removal of sulfate groups without harmful pyridine residues, demonstrating the potential use of the thermally stable CNSs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.